- 3. Холодов, Ж.К. Теория и методика физического воспитания и спорта / Ж.К. Холодов. М.: Физкультура и спорт, 2000. 348 с.
- 4. Корх, А.Я. Комплексный контроль в пулевой стрельбе : метод. рекомендации / А.Я. Корх. М. : ГЦОЛИФК, 1987. 95 с.
- 5. Лях, В.И. Координационные способности: диагностика и развитие / В.И. Лях. М.: Физкультура и спорт, 2006. 290 с.

УДК 796.012

В. И. Загревский, Ю. В. Воронович, О. И. Загревский, Д. А. Лавшук V. I. Zagrevsky, Y. V. Voronovich, O. I. Zagrevsky, D. A. Lavshuk

METOД РЕГРЕССИОННОГО АНАЛИЗА КОЛИЧЕСТВЕННОЙ ОЦЕНКИ МАСС-ИНЕРЦИОННЫХ ХАРАКТЕРИСТИК СЕГМЕНТОВ ТЕЛА ЧЕЛОВЕКА REGRESSION ANALYSIS QUANTITATIVE EVALUATION INERTIA CHARACTERISTICS SEGMENTS HUMAN BODY

Аннотация. В статье описывается технология использования уравнений регрессии для расчета масс-инерционных характеристик опорно-двигательного аппарата тела человека.

Summary. The article describes the technology of using regression equations to calculate the mass-inertial characteristics of the musculoskeletal system of the human body.

Ключевые слова: математическая модель, биомеханическая система, геометрия масс тела человека.

Keywords: mathematical model, biomechanical system, the geometry of the human body mass.

Педагогический анализ техники спортивных упражнений основывается в большей степени на материалах биомеханических исследований и, в частности, на сведениях о геометрии масс тела человека, используемых в расчетных моделях анализа движений для получения количественной информации о кинематической и динамической структуре исследуемых упражнений [1; 2]. В настоящее время в биомеханических исследованиях техники спортивных упражнений все чаще стали использовать данные о масс-инерционных характеристиках (далее – МИХ) звеньев тела спортсмена, полученные группой ученых во главе с В.М. Зациорским [3]. Экспериментальные данные получены в ре-

зультате прижизненного определения геометрии масс тела человека с использованием радиоизотопной методики измерений [3]. Материалы исследований можно дифференцировать на две группы. Основу первой группы данных составляют уточненные среднестатистические показатели масс сегмента тела человека и положение центра масс сегмента на его продольной оси (рис. 1).

Вторую группу данных составляют справочные сведения о росто-весовых коэффициентах сегментов тела, используемых в уравнениях регрессии для расчета МИХ сегментов тела человека. Так как в уравнениях регрессии используются сведения о росте и весе испытуемого, то считается, что вычисленные по этой методике показатели более точны, чем с использованием среднестатистических данных.

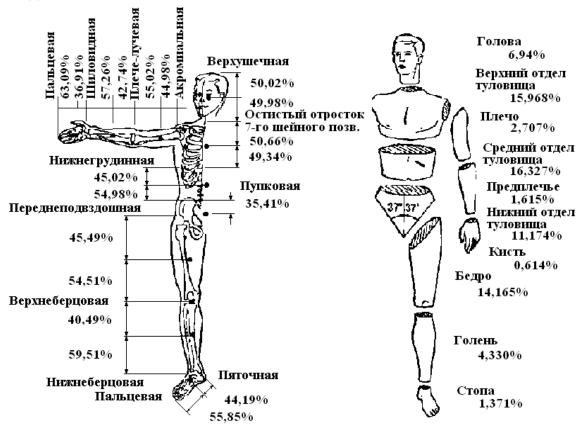


Рис. 1. **Среднестатистические данные** о масс-инерционных характеристиках сегментов тела человека

Зная длину сегмента, по относительному расположению центра масс (ЦМ) сегмента на его продольной оси, выраженному в процентах, определяют координату ЦМ сегмента (табл. 1).

Массу сегмента определяют по весовому коэффициенту, представленному в процентном соотношении массы сегмента от массы тела испытуемого. Вычислительные формулы расчета массы и координаты центра масс ЦМ сегментов с использованием среднестатистических данных имеют вид

$$m_i = mKm_i. (1)$$

$$S_i = L_i K c_i \,. \tag{2}$$

Здесь m_i — масса i-го сегмента, S_i — расстояние от антропометрической точки до ЦМ сегмента, m — масса тела испытуемого (кг), L_i — длина i-го сегмента. За антропометрические точки для отдельных сегментов принимаются:

- 1. Кисть лучезапястный сустав.
- 2. Предплечье локтевой сустав.
- 3. Плечо плечевой сустав.
- 4. Голова остистый отросток 7-го шейного позвонка.
- 5. Туловище (верхняя часть) остистый отросток 7-го шейного позвонка.
- 6. Туловище (средняя часть) нижнегрудинная.
- 7. Туловище (нижняя часть) переднеподвздошная.
- 8. Бедро переднеподвздошная (тазобедренный сустав).
- 9. Голень верхнеберцовая (коленный сустав).
- 10. Стопа пяточная.

Справочные сведения о росто-весовых коэффициентах сегментов тела, используемые в уравнениях регрессии, составляют вторую группу данных и приведены в таблицах 1 и 2.

Расчетные данные искомых показателей можно получить с использованием уравнений

$$m_i = A_{0,i} + A_{1,i} m + A_{2,i} H.$$
 (3)

$$S_i = B_{0,i} + B_{1,i} m + B_{2,i} H. (4)$$

Здесь Н – длина тела испытуемого (рост в см).

Таблица 1. Относительные (Kc_i) и весовые (Km_i) коэффициенты для вычисления массы и координаты центра масс на продольной оси сегмента тела человека

No	Коэффициенты	Коэффициент массы	Коэффициент координаты центра масс (см)			
п/п		(кг)				
	Сегменты	Km_i	Kc_i			
1	Кисть	0,00614	0,3691			
2	Предплечье	0,01615	0,4274			
3	Плечо	0,02707	0,4498			
4	Голова	0,06940	0,4998			
5	Туловище (верх. часть)	15,98900	05066			
6	Туловище (ср. часть)	16,32700	0,4502			
7	Туловище (нижн. часть)	11,17400	0,4549			
8	Бедро	0,14165	0,4549			
9	Голень	0,04330	0,4049			
10	Стопа	0,01371	0,4415			

Таблица 2. Коэффициенты уравнений регрессии для расчета массы и координаты центра масс на продольной оси сегмента тела человека

No -/-	Коэффициенты	Коэффиі	циенты ма	ссы (кг)	Коэффициенты координаты центра масс (см)			
п/п	Сегменты	$A_{0,i}$	$A_{1,i}$	$A_{2,i}$	$B_{0,i}$	$B_{1,i}$	$B_{2,i}$	
1	Кисть	-0,1165	0,00360	0,00175	4,110	0,0260	0,0330	
2	Предплечье	0,3185	0,01445	-0,00114	0,192	-0,0280	0,0930	
3	Плечо	0,2500	0,03012	-0,00270	1,670	0,0300	0,0540	
4	Голова	1,2960	0,01710	0,01430	8,357	-0,0025	0,0230	
5	Туловище (верхняя часть)	8,2144	0,18620	-0,05840	3,320	0,0076	0,0470	
6	Туловище (средняя часть)	7,1810	0,22340	-0,06630	1,398	0,0058	0,0450	
7	Туловище (нижняя часть)	-7,4980	0,09760	0,04896	1,182	0,0018	0,0434	
8	Бедро	-2,6490	0,14630	0,01370	-2,420	0,0380	0,1350	
9	Голень	-1,5920	0,03620	0,01210	-6,050	-0,0390	0,1420	
10	Стопа	-0,8290	0,00770	0,00730	3,767	0,0650	0,0330	

В уравнениях (3–4) учитываются индивидуальные антропометрические особенности испытуемых (рост, вес), что позволяет определить массу и координаты ЦМ сегмента с точностью от 3 % до 5 % [3]. Однако открытым остается вопрос об определении координаты центра масс туловища и его центральных моментов инерции. Естественно, что координаты ЦМ верхней, средней и нижней частей туловища вычисляются с использованием (3–4), однако алгоритмы вычислений координаты ЦМ туловища в первоисточнике не приводятся.

Табличные данные коэффициентов уравнений регрессии для расчета главных моментов инерции сегментов, приведенные в работе [3], существенно облегчают вычисление осевых моментов инерции сегментов тела человека (табл. 3).

Расчеты по определению осевых моментов инерции для i-го сегмента выполняются с использованием уравнений

$$Jx_i = C_{0,i} + C_{1,i} m + C_{2,i} H.$$
 (5)

$$Jy_i = D_{0,i} + D_{1,i} m + D_{2,i} H. (6)$$

$$Jz_i = E_{0,i} + E_{1,i} m + E_{2,i} H. (7)$$

Согласно уравнению (3) методика определения осевых моментов инерции сегментов тела человека с использованием уравнений (3–5) обеспечивает точность вычислений в пределах 3–5 %. Однако и в этом случае открытым остается вопрос определения осевых моментов инерции туловища. Алгоритм определения центральных моментов туловища, по данным его верхней, средней и

нижней частей, в первоисточнике не приводится. Поэтому исследователям приходится прибегать в экспериментах к использованию различного рода косвенных данных (аппроксимация туловища стержнями, цилиндрами, усеченными конусами и т. п.), которые недостаточно корректно отражают индивидуальные антропометрические особенности испытуемых и приводят к искажению действительной картины МИХ испытуемых.

Таблица 3. Коэффициенты уравнений регрессии для расчета осевого момента инерции сегмента тела человека

№ п/	Коэффи- циенты			альная ось Ох кг·см ²)		Фронтальная ось Оу $(\kappa_{\Gamma}\cdot c_{M}^{2})$			Продольная ось Оz (кг·см ²)		
П	Сегменты	$C_{0,i}$	$C_{1,i}$	$C_{2,i}$	$D_{0,i}$	$D_{1,i}$	$D_{2,i}$	$E_{0,i}$	$E_{1,i}$	$E_{2,i}$	
1	Кисть	-19,5	0,170	0,116	-13,68	0,088	0,092	-6,26	0,0762	0,0347	
2	Пред- плечье	-64,0	0,950	0,34	-67,90	0,855	0,376	5,66	0,306	-0,088	
3	Плечо	-250,7	1,560	1,512	-232,00	1,525	1,343	-16,90	0,662	0,0435	
4	Голова	-78,0	1,171	1,519	-112,00	1,430	1,730	61,60	1,720	0,0814	
5	Тулови- ще (верх. часть)	81,2	36,730	-5,97	367,00	18,300	-5,730	561,00	36,030	-9,980	
6	Тулови- ще (ср. часть)	618,5	39,800	-12,87	263,00	26,700	-8,000	1501,00	43,140	-19,800	
7	Тулови- ще (ниж. часть)	-1568,0	12,000	7,741	-934,00	11,800	3,440	-775,00	14,700	1,685	
8	Бедро	-3557,0	31,700	18,61	-3690	32,02	19,240	-13,50	11,300	-2,280	
9	Голень	-1105,0	4,590	6,63	-1152	4,594	6,815	-70,50	1,134	0,300	
1 0	Стопа	-100,0	0,480	0,626	-97,090	0,414	0,614	-15,48	0,144	0,088	

Цель исследования – разработать технологию количественной оценки координат центра масс туловища и его центральных моментов инерции с использованием уравнений регрессионного анализа.

Результаты исследования. Для получения корректных сведений о МИХ туловища испытуемых мы предлагаем использовать следующий алгоритм вычислений, который позволяет получить численные данные о координатах ЦМ туловища и его осевых моментах инерции, используя табличные данные коэффициентов уравнений регрессии верхней, средней и нижней частей туловища.

На первом этапе по уравнениям (3) вычисляется масса верхней части туловища (m_5) , средней – (m_6) и нижней – (m_7) . На втором этапе по уравнениям (4)

вычисляются координаты ЦМ верхней части туловища (S_5) , средней $-(S_6)$ и нижней $-(S_7)$.

На третьем этапе на основании вычисленных значений координат ЦМ верхней (S_5) и средней (S_6) части туловища определяется «биомеханическая» длина верхней (L_5) и средней (L_6) части туловища (рис. 2).

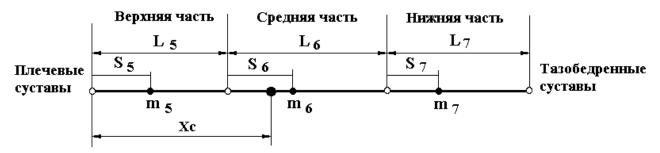


Рис. 2. Кинематическая схема туловища

Вычислительный алгоритм определения биомеханических длин верхней и нижней частей туловища с использованием данных уравнения (1) имеет вид

$$L_i = \frac{100S_i}{Kc_i}, \qquad i=5, 6.$$
 (8)

Далее относительно плечевого сустава вычисляется координата ЦМ туловища (Xc)

$$Xc = \frac{S_5 m_5 + (L_5 + S_6) m_6 + (L_5 + L_6 + S_7) m_7}{m_5 + m_6 + m_7}.$$
 (9)

Задача решена не полностью, т. к. еще не все компоненты МИХ туловища определены, в частности не вычислены осевые моменты инерции туловища. Для решения этого вопроса обратимся к работе [4], в которой рассматривается решение следующей задачи.

Допустим, Jc_1 и Jc_2 — центральные моменты инерции тел с массами m_1 и m_2 . Расстояние между ЦМ этих двух тел — h. В этом случае момент инерции тела (J_0), составленного из этих двух тел, относительно их общего ЦМ (для полярного момента) или новой оси (плоскости), параллельной первым двум осям (плоскости) и проходящей через их общий ЦМ, равен [4]

$$J_0 = J_{c_1} + J_{c_2} + \frac{m_1 m_2}{m_1 + m_2} h^2. \tag{10}$$

Воспользуемся (10) для решения нашей задачи. Первоначально определим центральный момент инерции верхней и средней части туловища. Из (5)

определим Jx_5 , Jx_6 , Jx_7 . И, соответственно, из (6–7) имеем значения для Jy_5 , Jy_6 , Jy_7 и для Jz_5 , Jz_6 , Jz_7 .

Из результатов вычислений по уравнениям (8) определим h для (10), если первоначально в качестве h рассматривать расстояние (h_1) между ЦМ верхней и средней частями туловища

$$h_1 = L_5 - S_5 + S_6. (11)$$

Запишем, основываясь на (10), формульное выражение центрального момента инерции для системы, состоящей из верхней и средней части туловища, относительно его центра масс при вращении вокруг оси Ох (Jx_0) и оси Оу (Jy_0)

$$Jx = Jx_5 + Jx_6 + \frac{m_5 m_6}{m_5 + m_6} (L_5 - S_5 + S_6)^2.$$

$$Jy = Jy_5 + Jy_6 + \frac{m_5 m_6}{m_5 + m_6} (L_5 - S_5 + S_6)^2.$$
(12)

Для рассматриваемой системы тел (верхняя и средняя часть туловища) присоединим нижнюю часть туловища. Получим координату ЦМ для системы тел, включающей верхнюю и среднюю части туловища (Xc_1), и координату ЦМ нижней части туловища (Xc_2) при расположении начала декартовой системы координат в оси плечевых суставов

$$Xc_1 = \frac{m_5 S_5 + m_6 (L_5 + S_6)}{m_5 + m_6}, \qquad Xc_2 = L_5 + L_6 + S_7.$$
 (13)

Полученные данные позволяют определить расстояние между центрами масс верхней и средней части туловища и присоединенной к ним нижней части туловища (h_2) как системы тел

$$h_2 = Xc_2 - Xc_1. (14)$$

Отсюда, центральный момент инерции туловища относительно его центра масс при вращении вокруг оси Ох (Jx_0) и оси Оу (Jy_0) равен

$$Jx_0 = Jx + Jx_7 + \frac{(m_5 + m_6)m_7}{m_5 + m_6 + m_7}(h_2)^2$$
.

$$Jy_0 = Jy + Jy_7 + \frac{(m_5 + m_6)m_7}{m_5 + m_6 + m_7} (h_2)^2.$$
 (15)

Здесь Jx и Jy определяется из (12), h_2 – из (14).

Если считать, что ЦМ верхней, средней и нижней частей туловища расположены на его продольной оси, то центральный момент инерции туловища

относительно его продольной оси (Jz_0) определяется как сумма центральных моментов инерции Jz_5, Jz_6, Jz_7

$$Jz_0 = Jz_5 + Jz_6 + Jz_7. (16)$$

Таким образом, все три центральных момента инерции для туловища определены, что позволяет в дальнейшем решать задачи биомеханики движений спортсмена в пространственной системе координат.

Получены вычислительные алгоритмы, позволяющие успешно применять метод регрессионного анализа как для расчета координаты центра масс туловища, так и для вычисления его осевых моментов и получить исходные данные, необходимые для анализа пространственного движения биомеханической системы.

Библиографический список

- 1. Загревский, В.И. Построение оптимальной техники спортивных упражнений в вычислительном эксперименте на ПЭВМ: монография / В.И. Загревский, Д.А. Лавшук, О.И. Загревский. Могилев: МГУ им. А.А. Кулешова, 2000. 190 с.
- 2. Математическое моделирование движений человека как инструмент оптимизации спортивной техники / В.И. Загревский [и др.] //Актуальные вопросы права, образования и психологии : сб. научн. трудов / М-во внутр. дел Респ. Беларусь, учреждение образования «Могилевский высший колледж Министерства внутренних дел Республики Беларусь»; редкол.: Ю.П. Шкаплеров (отв. ред) [и др.]. Могилев : Могилев. высш. колледж МВД Респ. Беларусь, 2014. С. 256–262.
- 3. Зациорский, В.М. Биомеханика двигательного аппарата человека / В.М. Зациорский, А.С. Аруин, В.Н. Селуянов. М.: ФиС, 1981. 143 с.
- 4. Фаворин, М.В. Моменты инерции тел: справочник / М.В. Фаворин; под ред. М.М. Гернета. 2-е изд., перераб. и доп. М.: Машиностроение, 1977. 511 с.